Idealmente, você gostaria que um sinal filtrado fosse liso e livre de atraso. Lag provoca atrasos em seus negócios e o aumento do atraso nos seus indicadores geralmente resulta em menores lucros. Em outras palavras, os atrasados ficam o que está à esquerda na mesa depois que a festa já começou. É por isso que investidores, bancos e instituições em todo o mundo pedem a Jurik Research Moving Average (JMA). Você pode aplicá-lo exatamente como você faria com qualquer outra média móvel popular. No entanto, JMAs melhorou timing e suavidade irá surpreender você. A linha cinzenta irregular no gráfico simula ação de preço que começa em um baixo intervalo de negociação e, em seguida, lacunas para uma maior faixa de negociação. Como ninguém gosta de esperar à margem, um filtro de redução de ruído perfeito (linha verde) se moverá suavemente ao longo do centro da primeira faixa de negociação e, em seguida, pulará para o centro da nova faixa de negociação quase imediatamente. Kaufman Adaptive Moving Average Trading Strategy ( Configuração 038 Filter) I. Estratégia de negociação Desenvolvedor: Perry Kaufman (Kaufman Adaptive Moving Average 8211 KAMA). Fonte: Kaufman, P. J. (1995). Comércio mais inteligente. Melhorando o desempenho na mudança de mercados. Nova York: McGraw-Hill, Inc. Conceito: estratégia de negociação baseada em um filtro de ruído adaptativo. Objetivo de pesquisa: verificação de desempenho da configuração e do filtro. Especificação: Tabela 1. Resultados: Figura 1-2. Configuração de comércio: negócios longos: a média móvel adaptativa (AMA) aparece. Operações curtas: a média móvel adaptativa diminui. Nota: A linha de tendência AMA parece parar quando os mercados não têm direção. Quando a tendência dos mercados, a linha de tendência da AMA alcança. Entrada de Comércio: Long Trades: Uma compra no fechamento é colocada após uma configuração de alta. Negociações curtas: uma venda no fechamento é colocada após uma configuração de baixa. Trade Exit: Tabela 1. Carteira: 42 mercados de futuros de quatro grandes setores de mercado (commodities, moedas, taxas de juros e índices de participação). Dados: 32 anos desde 1980. Plataforma de teste: MATLAB. II. Teste de sensibilidade Todas as tabelas 3-D são seguidas por gráficos de contorno bidimensionais para fator de lucro, Ratio de Sharpe, Índice de desempenho de úlcera, CAGR, Drawdown máximo, Negociações lucrativas percentuais e Média. Win Avg. Rácio de perda. A imagem final mostra a sensibilidade da Equity Curve. Variáveis testadas: ERLength amp FilterIndex (Definições: Tabela 1): Figura 1 Desempenho do portfólio (Entradas: Tabela 1 Comitê amp Slippage: 0). AMA (ERLength) é a média móvel adaptativa durante um período de ERLength. ERLength é um período de retorno da Razão de Eficiência (ER). ERi abs (Directioni Volatilityi), onde 8220abs8221 é o valor absoluto. Directioni Closei Closei ERLength, Volatilityi (abs (DeltaClosei), ERLength), onde 82208221 é a soma em um período de ERLength, DeltaClosei Closei Closei 1. FastMALength é um período da média em movimento rápido. SlowMALength é um período da média lenta. AMAi AMAi 1 ci (Closei AMAi 1), onde ci (ERi (Fast Slow) Slow) 2, Fast 2 (FastMALength 1), Slow 2 (SlowMALength 1). Índice: i ERLength 2, 100, Passo 2 FastMALength 2 SlowMALength 30 Long Trades: Se AMAi gt AMAi 1 amp AMAi 1 lt AMAi 2, então o MinAMA AMAi 1 (Adaptive Moving Average aparece com um pivô no MinAMA). Operações curtas: AMAi lt AMAi 1 amp AMAi 1 gt AMAi 2, em seguida, MaxAMA AMAi 1 (Adaptive Moving Average desativa-se com um pivô no MaxAMA). Índice: i Filteri FilterIndex StdDev (AMAi AMAi 1, N), onde StdDev é o desvio padrão da série ao longo de N períodos. N 20 (valor padrão). Índice: i FilterIndex 0.0, 1.0, Passo 0.02 N 20 Long Trades: Uma compra no fechamento é colocada quando AMAi gt AMAi 1 amp (AMAi MinAMA) gt Filteri. Negociações curtas: uma venda no fechamento é colocada quando AMAi lt AMAi 1 amp (MaxAMA AMAi) gt Filteri. Índice: i Stop Loss Sair: ATR (ATRLength) é o alcance real médio durante um período de comprimento ATRL. ATRStop é um múltiplo de ATR (ATRLength). Long Trades: uma parada de venda é colocada no Entry ATR (ATRLength) ATRStop. Operações curtas: uma parada de compra é colocada no ATR ATR (ATRLength) ATRStop. ATRLength 20 ATRStop 6 ERLength 2, 100, Step 2 FilterIndex 0.0, 1.0, Passo 0.02Do as médias móveis adaptativas conduzem a melhores resultados As médias móveis são uma ferramenta favorita dos comerciantes ativos. No entanto, quando os mercados se consolidam, este indicador leva a inúmeras negociações de whipsaw, resultando em uma frustrante série de pequenas vitórias e perdas. Os analistas passaram décadas tentando melhorar a média móvel simples. Neste artigo, analisamos esses esforços e descobrimos que sua busca levou a ferramentas comerciais úteis. (Para a leitura de fundo em médias móveis simples, verifique as Médias móveis simples, faça com que Tendências se destaquem.) Prós e contras de médias móveis As vantagens e desvantagens das médias móveis foram resumidas por Robert Edwards e John Magee na primeira edição da Análise Técnica de Tendências de estoque. Quando eles disseram e voltou em 1941 que fizemos a descoberta (embora muitos outros tivessem feito isso antes) que ao calcular a média dos dados para um determinado número de dias, alguém poderia derivar uma espécie de linha de tendência automatizada que definitivamente interpretaria as mudanças de A moda parecia quase boa demais para ser verdade. Na verdade, era bom demais para ser verdade. Com as desvantagens que superam as vantagens, Edwards e Magee rapidamente abandonaram seu sonho de negociar a partir de um bangalô na praia. Mas, 60 anos depois, eles escreveram essas palavras, outros persistem em tentar encontrar uma ferramenta simples que ofereça sem esforço a riqueza dos mercados. Médias móveis simples Para calcular uma média móvel simples. Adicione os preços para o período de tempo desejado e divida pelo número de períodos selecionados. Encontrar uma média móvel de cinco dias exigiria somar os cinco preços de fechamento mais recentes e dividir por cinco. Se o fechamento mais recente estiver acima da média móvel, o estoque seria considerado como uma tendência de alta. As taxas de queda são definidas por preços abaixo da média móvel. (Para mais, consulte o nosso tutorial de Moedas em Movimento.) Esta propriedade que define a tendência torna possível que as médias móveis gerem sinais de negociação. Na sua aplicação mais simples, os comerciantes compram quando os preços se movem acima da média móvel e vendem quando os preços cruzam abaixo dessa linha. Uma abordagem como esta é garantida para colocar o comerciante no lado direito de cada comércio significativo. Infelizmente, ao suavizar os dados, as médias móveis ficarão atrasadas da ação do mercado e o comerciante quase sempre devolverá uma grande parte de seus lucros mesmo nos maiores negócios vencedores. Médias móveis exponenciais Os analistas parecem gostar da idéia da média móvel e passaram anos tentando reduzir os problemas associados a esse atraso. Uma dessas inovações é a média móvel exponencial (EMA). Esta abordagem atribui uma ponderação relativamente maior aos dados recentes e, como resultado, fica mais próxima da ação de preço do que uma média móvel simples. A fórmula para calcular uma média móvel exponencial é: EMA (Weight Close) ((1-peso) EMAy) Onde: Peso é a constante de suavização selecionada pelo analista EMAy é a média móvel exponencial de ontem Um valor de ponderação comum é 0.181, o que Está perto de uma média móvel simples de 20 dias. Outra é 0,10, que é aproximadamente uma média móvel de 10 dias. Embora reduza o atraso, a média móvel exponencial não consegue resolver outro problema com médias móveis, o que é que o uso deles para sinais comerciais levará a uma grande quantidade de negociações perdidas. Em Novos Conceitos em Sistemas de Negociação Técnica. Welles Wilder estima que os mercados apenas se movem um quarto do tempo. Até 75 da ação comercial se limitam a intervalos estreitos, quando os sinais de compra e venda média em movimento serão repetidamente gerados à medida que os preços se movem rapidamente acima e abaixo da média móvel. Para resolver este problema, vários analistas sugeriram variar o fator de ponderação do cálculo EMA. (Para mais, veja Como são as médias móveis utilizadas na negociação) Adaptando as médias móveis à ação do mercado Um método para enfrentar as desvantagens das médias móveis é multiplicar o fator de ponderação por uma razão de volatilidade. Fazer isso significaria que a média móvel seria mais longe do preço atual em mercados voláteis. Isso permitiria que os vencedores fossem executados. À medida que a tendência chega ao fim e os preços se consolidam. A média móvel se aproximaria da ação atual do mercado e, em teoria, permitiria ao comerciante manter a maioria dos ganhos captados durante a tendência. Na prática, o índice de volatilidade pode ser um indicador, como a largura de banda Bollinger, que mede a distância entre as bem conhecidas Bandas Bollinger. (Para mais informações sobre este indicador, consulte The Basics of Bollinger Bands.) Perry Kaufman sugeriu a substituição da variável de peso na fórmula EMA com uma constante baseada na razão de eficiência (ER) em seu livro, New Trading Systems and Methods. Este indicador é projetado para medir a força de uma tendência, definida dentro de um intervalo de -1,0 a 1,0. É calculado com uma fórmula simples: ER (variação total do preço por período) (soma das variações absolutas de preços para cada barra) Considere uma ação que tenha um intervalo de cinco pontos por dia, e ao final de cinco dias tenha ganho um total De 15 pontos. Isso resultaria em um ER de 0,67 (15 pontos de movimento ascendente dividido pela faixa total de 25 pontos). Se esse estoque tivesse diminuído 15 pontos, o ER seria de -0,67. (Para obter mais conselhos comerciais de Perry Kaufman, leia Perdendo para Ganhar, que descreve estratégias para lidar com perdas comerciais.) O princípio de uma eficiência de tendências é baseado em quanto movimento direcional (ou tendência) você obtém por unidade de movimento de preços ao longo de um Período de tempo definido. Um ER de 1.0 indica que o estoque está em uma evolução ascendente perfeita -1.0 representa uma tendência de queda perfeita. Em termos práticos, os extremos raramente são alcançados. Para aplicar este indicador para encontrar a média móvel adaptativa (AMA), os comerciantes precisarão calcular o peso com o seguinte, bastante complexo, fórmula: C (ER (SCF SCS)) SCS 2 Onde: SCF é a constante exponencial para o mais rápido EMA permitido (geralmente 2) SCS é a constante exponencial para o EMA mais lento permitido (muitas vezes 30) ER é a relação de eficiência que foi observada acima. O valor para C é então usado na fórmula EMA em vez da variável de peso mais simples. Embora seja difícil de calcular à mão, a média móvel adaptativa é incluída como uma opção em quase todos os pacotes de software comercial. (Para obter mais informações sobre o EMA, leia Explorando a média móvel ponderada exponencialmente.) Exemplos de uma média móvel simples (linha vermelha), uma média móvel exponencial (linha azul) e a média móvel adaptativa (linha verde) são mostradas na Figura 1. Figura 1: A AMA está em verde e mostra o maior grau de achatamento na ação de alcance visto no lado direito deste gráfico. Na maioria dos casos, a média móvel exponencial, mostrada como a linha azul, é mais próxima da ação de preço. A média móvel simples é mostrada como a linha vermelha. As três médias móveis mostradas na figura são todas propensas a negociações de whipsaw em várias ocasiões. Esta desvantagem para as médias móveis foi até agora impossível de eliminar. Conclusão Robert Colby testou centenas de ferramentas de análise técnica na Encyclopedia of Technical Market Indicators. Ele concluiu que, embora a média móvel adaptativa seja uma novidade interessante, com um considerável atrativo intelectual, nossos testes preliminares não conseguem mostrar qualquer vantagem prática real para este método de suavização de tendências mais complexo. Isso não significa que os comerciantes devem ignorar a idéia. A AMA poderia ser combinada com outros indicadores para desenvolver um sistema comercial lucrativo. (Para mais informações sobre este tópico, leia Descobrindo Canais Keltner e O Oscilador Chaikin.) O ER pode ser usado como um indicador de tendência autônomo para detectar as oportunidades comerciais mais lucrativas. Como um exemplo, as proporções acima de 0,30 indicam fortes tendências ascendentes e representam compras potenciais. Alternativamente, uma vez que a volatilidade se move em ciclos, os estoques com o menor índice de eficiência podem ser vistos como oportunidades de fuga.
No comments:
Post a Comment